		Faculty of Natural Sciences and Mathematics Chemistry Department Chemistry Education Study Program			
Module name		Mathematics			
Module level, if applicable		1 st Year			
Code, if applicable		SPK - 102			
Semester(s) in which the module is taught		1 st semester			
Person responsible for the module		Basuki Abdurrahman, Drs., M.Si.			
Lecturer		Basuki Abdurrahman, Drs., M.Si.			
Language		Indonesia			
Relation to curriculum		Compulsory			
Teaching methods	Class size	Forms of active participation	Workload 13	36 hours	
Class	50-60	Discussion	Lecture: 150 (min) x 16	40 hours	
discussion			(meeting)		
			Assignment: 180 (min) x	48 hours	
			I6 (week)	10 h ouro	
			(min) x 16 (week)	40 110015	
ECTS Credit		4 86			
Credit points		3 SCU			
Requirements according to the		Minimum attendance at lectures is 75% (according to UII)			
examination regulations		regulation)			
Recommended prerequisites		N/A			
Related course					
Module objectives/intended		On successful completion of the course students should be			
learning outcomes		able to:			
		1. Explain basic mathematical concepts			
		K-106-1A: explain the concept of the set of real			
		numbers, Cartesian and polar coordinates, linear			
		equations and determinants, sequence functions, limits,			
		continuity, derivatives, theorem of mean value, Rolle's			
		graphs differentials vector algebra derivatives of			
		vector functions			
		K-106-1B: explain the concept of indefinite integral.			
		integration methods (substitutions, partials, rational			
		fractions, goniometric functions)			

	K-106-1C: explain the concept of certain integrals
	(Riemann): integral as the limit of the number, the
	average value of integral
	K-106-1D: explain the concept of improper integrals,
	the use of integrals of flat area, arc length, the volume
	of rotating objects, areas of rotation, the centre of mass
	and moment of inertia, double integrals, and their use
	to understand theoretical concepts in chemistry
	(structures), changes in energy and kinetics.
	2. Implement basic math on calculations
	K-106-2A: calculate cases related to the set of real
	numbers, Cartesian and polar coordinates, linear
	equations and determinants, sequence functions, limits,
	continuity, derivatives, mean value theorem, Rolle's
	theorem, Taylor's theorem, extreme values, painting
	graphs, differentials, vector algebra, derivatives of
	vector functions.
	K-106-2B: calculate indefinite integrals: integration
	methods (substitutions, partials, rational fractions,
	K-106-2C; calculate certain integrals (Riemann);
	integral as the limit of the number, the average value of
	the integral
	3. K-106-2D calculate improper integrals use integrals
	of flat area, arc length, the volume of rotating objects.
	areas of rotation, the centre of mass and moment of
	inertia, multiple integrals, and their uses.
Content	• concept of the set of real numbers, Cartesian and polar
	coordinates, linear equations and determinants,
	sequence functions, limits, continuity, derivatives,
	theorem of mean value, Rolle's theorem, Taylor's
	theorem, extreme values, painting graphs, differentials,
	vector algebra, derivatives of vector functions.
	• concept of indefinite integral: integration methods
	(substitutions, partials, rational fractions, goniometric
	functions)
	• concept of certain integrals (Riemann): integral as the
	limit of the number, the average value of the integral
	concept of improper integrals, the use of integrals of flat
	area, arc length, the volume of rotating objects, areas of
	rotation, the centre of mass and moment of inertia, double
	integrals, and their use to understand theoretical concepts
	in chemistry (structures), changes in energy and kinetics,
	Einal score (NA) is calculated as follows:
	Final score (INA) is calculated as follows:

Study and examination	Intended	Weight	Technique of	
requirements and forms of	learning outcomes	(%) assessment		
examination	1	40	Written	test:
	assignment, midterm		rm	
	2	60	Written	test:
			assignment,	final
			examination	
Media employed	Power point slide presentation, video, Google classroom			
Reading list	Gowers, T., 2002, Mathematics: A Very Short Introduction, UK: Oxford University Press.			
	Larson, R., and Edwards, B.H., 2009, Calculus, Cengage			
	Learning.			
	Pickover, C.A., 2012, The Math Book: From Pythagoras			
	to the 57th Dimension, 250 Milestones in the History of			
	Mathematics (Sterling Milestones). Sterling Publishing.			
	Stewart, J., 2011, Calculus, Brooks Cole, 7 editions.			
	Weiss, J., 2010, T	he Calculu	s Direct: An intu	itively
	Obvious Approach to a Basic Understanding of the			
	Calculus for the Casual Observer, Create Space.			

Prepared by:	Verified by:	Authorized by:
* Athen =	mohal	
Person responsible for the module	Student representative	Coordinator Program