| LINIVERSITAS | | Faculty of Natural Sciences and Mathematics Chemistry Department Chemistry Education Study Program | | | | | |-------------------------------------|------------------------|--|--|----------|--|--| | Module Name | | Environmental Chemistry | | | | | | Module level, if applicable | | 3 st year | | | | | | Code, if applicable | | SPK-648 | | | | | | Semester (s) in which the module is | | 6 st semester | | | | | | taught | | | | | | | | Person responsible for the module | | Prof. Riyanto, M.Si., Ph.D | | | | | | Lecturer(s) | | Prof. Riyanto, M.Si., Ph.D | | | | | | _ | | Muhaimin, M.Sc. | | | | | | Language | | English- Indonesia Compulsory | | | | | | | Relation to curriculum | | | | | | | Types of teaching | Class size | Forms of active | Workload: 91 hours | | | | | and learning Class discussion | 50 60 | participation | 1 | 07.1 | | | | Class discussion | 50 – 60 | Discussion | Lecture: 100 (min) x 16 | 27 hours | | | | | | | (meeting) Assignment: 120 (min) x 16 | 32 hours | | | | | | | (week) | 32 Hours | | | | | | | Independent study: 120 (min) x 16 (week) | 32 hours | | | | ECTS credit | | 3.25 | | | | | | Credit points | | 2 SCU | | | | | | Requirements according to | | Minimum attendance at lectures is 75% (according to UII | | | | | | examination regulations | | regulation) | , C | | | | | Recommended prerequisites | | N/A | | | | | | Related course | | Analytical Chemistry I and II | | | | | | Module objectives/intended learning | | On successful completion of the course students should be able | | | | | | | | | to: | | | | | | | 1. Explain chemical knowledge in the fields of chemical | | | | | | | | industry, energy and the environment | | | | | | | | 2. Identify the link between chemical knowledge and its | | | | | | | | analysis in the chemical industry, environmental energy correctly | | | | | | Content | | | | | | | | Content | | Introduction to environmental chemistryHydrological cycle | | | | | | | | Characteristics of water bodies | | | | | | | | Chemical reactions in the waters | | | | | | | | Heavy metal and nutrient cycle | | | | | | | | Changes in species of compounds in the waters | | | | | | | | Water pollution | | | | | | | | Atmospheric composition | | | | | | Study and examination requirements and forms of examination | Photochemical reactions in the atmosphere Ozone depletion chain reaction Basic knowledge of environmental impact analysis Environmental quality standards Basic knowledge of wastewater treatment Final score (NA) is calculated as follows: Intended Intended Intended Intended | | | |---|--|---------------|---| | | learning outcomes | Weight (%) 50 | assessment Written test: assignment, midterm | | | 2 | 50 | Written test: assignment, final examination | | Media employed | Powerpoint slide presentation, video, Google classroom | | | | Reading lists | Powerpoint slide presentation, video, Google classroom Baird, C., and Cann, M., 2008, Environmental Chemistry, 4th ed., W. H. Freeman. Manahan, S.E., 2009, Environmental Chemistry, Ninth Edition. CRC Press. Van Loon, G.W., and Duffy, S.J., 2009, Environmental Chemistry: A global perspective, 3rd ed., Oxford University Press, USA. Girard, J.E., 2009, Principles of Environmental Chemistry, 2nd ed., Jones & Bartlett Publishers. Ibanez, J.G., Hernandez-Esparza, M., Doria-Serrano, C., Fregoso-Infante, A., and Singh, M.M., 2009, Environmental Chemistry: Fundamentals, Springer. Spiro, T.G., and Stigliani, W.M., 2002, Chemistry of the Environment, 2nd ed., Prentice Hall. Baird, C., and Cann, M., 2012, Environmental Chemistry, 5th ed., W. H. Freeman. | | | | Prepared by: | Verified by: | Authorized by: | | |-----------------------------------|------------------------|---------------------|--| | | A francisco | | | | Person responsible for the module | Student representative | Coordinator Program | |